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Abstract 7 

By characterizing high-frequency surface thermal dynamics at a medium spatial scale, 8 

hourly land surface temperatures (LST), retrieved from geostationary satellite thermal infrared 9 

(TIR) observations, shows great potential to be used across a range of scientific applications; 10 

however, cloud cover typically leads to data gaps and degraded retrieval accuracy in TIR LST 11 

products, such as the official Advanced Baseline Imager (ABI) LST product. Studies have focused 12 

on the LST gap reconstruction; however, most interpolation-based methods only work for a short-13 

term cloud duration and are unable to adequately compensate for cloud effects, and traditional 14 

surface energy balance (SEB)-based methods are able to handle cloud coverage while they are not 15 

feasible for use at night. Moreover, few studies have concentrated on recovering the abnormal 16 

retrievals of partial cloud pixels. In this study, an all-sky diurnal, hourly LST estimation method 17 

based on SEB theory was proposed; the proposed method involved three major steps: 1) an original 18 

spatiotemporal dynamic model of LST was constructed from ECMWF Reanalysis v.5 (ERA5); 2) 19 

clear-sky ABI LST was then assimilated to the dynamic model to generate a continuous LST series; 20 

3) the diurnal cloud effects were superimposed on cloudy time estimated by an innovative 21 

optimization method from satellite radiation products. A 2-km, all-sky, hourly LST product was 22 

produced over the contiguous US and Mexico from July 2017 to June 2021. Validation was 23 
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conducted using ground measurements at 18 sites from Surface Radiation (SURFRAD) and core 24 

AmeriFlux networks, and produced an overall root-mean-square error (RMSE) of 2.44 K, a bias 25 

of -0.19 K, and an R2 of 0.97 based on 408,300 samples. For clear-sky samples, the RMSE values 26 

were 2.37 and 2.24 K for day and nighttime, respectively, which was a notable improvement over 27 

the corresponding values of the official ABI LST product (2.73 and 2.86 K, respectively). The 28 

RMSE values on cloudy-sky were 2.78 and 2.23 K for day and nighttime, respectively. The daily 29 

mean LST by aggregating all-sky, hourly LST had an RMSE of 1.13 K and R2 of 0.99. Overall, 30 

this product showed reliability under consistent cloud durations, although it was slightly affected 31 

by surface elevation. The diurnal temperature cycle climatology of major land cover types was 32 

also characterized. The product is freely available at: http://glass.umd.edu/allsky_LST/ABI/. 33 
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1. Introduction 38 

The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) 39 

confirmed that the earth’s climate has warmed 1.5 °C above pre-industrial levels, in a process 40 

unequivocally resulting from human activities (Delmotte et al., 2018; Delmotte et al., 2021). Land 41 

surface temperature (LST) drives the surface radiation and hydrological budgets, and is one of the 42 

most important indicators for characterizing global climate change (Jia et al., 2020; Jin, 2004; Li 43 

et al., 2013; Liang et al., 2021). This radiative temperature at the terrestrial surface reflects the 44 

surface equilibrium state, and hence, has been utilized for a variety of purposes, including air 45 

temperature and heat flux estimates (Chen and Liu, 2020; Rao et al., 2019), drought monitoring 46 



3 

 

(Karnieli et al., 2010), permafrost mapping (Zou et al., 2017), urban heat island analysis (Hrisko 47 

et al., 2020; Imhoff et al., 2010), and hazard risk detection (e.g., earthquakes, forest fire danger, 48 

and parasites) (Blackett et al., 2011; Chuvieco et al., 2004; Neteler et al., 2011). Given the 49 

spatiotemporal scale of such research and heterogeneity of LST, satellite remote sensing has 50 

become the only feasible approach for measuring regional and global LST. 51 

LST is well retrieved from thermal infrared (TIR) sensors onboard polar-orbiting platforms, 52 

such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on both Terra and Aqua 53 

(Wan and Dozier, 1996; Wan and Li, 1997); however, because of the limited return times, MODIS 54 

LST products cannot capture diurnal temperature cycles (DTCs). DTCs identify the high temporal 55 

variability of LST, and play a vital role in advancing meteorological modeling (Orth et al., 2017), 56 

downscaling (Zakšek and Oštir, 2012), and intra-day health exposure assessments from extreme 57 

temperature events (Hrisko et al., 2020; Jiang et al., 2015). Studies have also revealed that DTCs 58 

are influenced by plant stomatal closure; therefore, they can also be used to estimate plant water 59 

stress and evapotranspiration levels (Fensholt et al., 2011; Stisen et al., 2008). In addition, the 60 

morning warming rate has been shown to be directly related to soil moisture status (Anderson et 61 

al., 2007; Piles et al., 2016; Van de Griend et al., 1985). Hence, geostationary (GEO) satellites 62 

such as Geostationary Operational Environmental Satellites (GOES)-R Advanced Baseline Imager 63 

(ABI) (Yu et al., 2008), Meteosat Second Generation (MSG) Spinning Enhanced Visible and 64 

InfraRed Imager (SEVIRI) (Freitas et al., 2009), and the Feng Yun meteorological satellites (Tang 65 

et al., 2008), have become an optimal choice for observing sub-hourly LST across a wide spatial 66 

coverage (Freitas et al., 2013). 67 

However, cloud cover results in invalid pixels or degraded retrieval accuracy due to partial 68 

cloud contamination, constricting LST applications, and limiting all-sky GEO LST products 69 
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available to the public. Therefore, LST-related analyses have focused strictly on clear-sky cases 70 

(e.g., estimating urban air temperature from GOES-16 LST, Hrisko et al. (2020)), or post-71 

processing local temperature data by researchers (e.g., detecting coastal upwelling in the Mid-72 

Atlantic Bight from gap-filled GOES-16 SST by DINEOF, Murphy et al. (2021)). Consequently, 73 

there is an urgent need for an all-sky, hourly LST product using a more practical cloudy-sky GEO 74 

LST estimation method. Different algorithmic methods have been developed to recover cloudy 75 

pixel data in LST products (Mo et al., 2021; Wu et al., 2021), such as passive microwave (PMW) 76 

data (Duan et al., 2017; Xu and Cheng, 2021; Yoo et al., 2020; Zhang et al., 2021), modeled data 77 

(Fu et al., 2019; Li et al., 2021; Long et al., 2020), mathematical interpolation (Neteler, 2010; 78 

Zhang et al., 2022; Zhou et al., 2017), and surface energy balance (SEB) (Jia et al., 2021; Zeng et 79 

al., 2018). Although these proposed LST reconstruction methods are sensor-independent, they are 80 

primarily designed for polar-orbiting satellites, and directly applying these methods to GEO LST 81 

is not efficient and does not take adequate advantage of its higher temporal resolution. In 82 

comparison, cloudy-sky GEO LST estimation methods have not been well developed. 83 

Limited studies have utilized PMW data for cloudy-sky GEO LST estimation because of 84 

its low spatiotemporal resolutions, in addition to the inherent physical property limitations of 85 

microwave signals. Generally, LSTs have considerable diurnal variation, while global PMW data 86 

can only be collected twice daily. Moreover, microwave signals are sensitive to surface emissivity, 87 

which can be highly affected by soil composition, moisture, and vegetation type; thus, the achieved 88 

accuracies of PMW-derived LST vary by up to 6 K (Dash et al., 2002). Marullo et al. (2010) 89 

generated gap-free, sea surface temperature (SST) data every 3 h by merging SSTs from the 90 

Advanced Microwave Scanning Radiometer (AMSR) PMW and SEVIRI via optimal interpolation, 91 

under the assumption that the SST biases at the overlapping passing times remained constant. Such 92 
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an assumption might be feasible for SSTs because of their relative spatiotemporal stability but 93 

would not hold for LSTs. As precipitation has been successfully retrieved via a combination of 94 

PMW and GEO data assimilation (Kidd et al., 2003; Ushio et al., 2009), PMW data still maintain 95 

the potential for cloudy-sky GEO LST estimates (Holmes et al., 2015; Wu et al., 2021). 96 

Simulated LSTs by land surface models are another auxiliary data candidate for filling 97 

cloud gaps because of their continuous spatial coverage and high temporal resolution. Marullo et 98 

al. (2014) fused clear-sky SSTs from the SEVIRI and Mediterranean Forecasting System to 99 

generate gap-free, hourly SSTs using diurnal optimal interpolation across a moving temporal 100 

window. Different model outputs have also been evaluated for filling invalid SST pixels (Nardelli 101 

et al., 2015); however, the resulting accuracies of cloudy-sky results were highly reliant upon 102 

simulation data, especially for continuous cloudy days, and no further correction was implemented 103 

(Fablet et al., 2017). Dumitrescu et al. (2020) fused daytime hourly SEVIRI LSTs and modeled 104 

skin temperature using multiple linear regression and generalized additive models, in addition to 105 

elevation, time, and solar radiation to improve GEO LST estimation under clouds. Inherently, 106 

applying a clear-sky statistical model to cloudy cases introduces error, as the cloud cooling effect 107 

cannot be replicated by cloud-free samples. In addition, surface parameters (e.g., albedo and 108 

vegetation coverage) also substantially influence LST, but have not been adequately accounted for. 109 

Furthermore, few studies have focused on recovering ABI LST by combining satellite retrieval 110 

with model simulations. 111 

Owing to the unique cycles, temporal interpolation based on a DTC model is the dominant 112 

method for missing GEO LST reconstruction. A DTC model is defined by a harmonic function 113 

during the day and an exponential function at night (Duan et al., 2012), of which parameters can 114 

be obtained by model simulation (Jin and Treadon, 2003), statistics (Aires et al., 2004; Ignatov 115 
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and Gutman, 1999), and physical interpretation (Göttsche and Olesen, 2009; Schädlich et al., 2001). 116 

Parton and Logan (1981) initially created a DTC model to describe real-time temperature variation, 117 

which was then developed for GEO brightness temperature (BT) or LST temporal interpolation 118 

(Göttsche and Olesen, 2001; Inamdar and French, 2009; Inamdar et al., 2008; Jiang et al., 2006; 119 

Udahemuka et al., 2008; Van den Bergh et al., 2007). Thereafter, DTC models were improved by 120 

introducing energy partitioning constraints (Gottsche and Olesen, 2009; Zhan et al., 2013; Zhan et 121 

al., 2014), and Huang et al. (2014) proposed a generic, quasi-physical DTC framework based on 122 

the SEB and heat conduction equations. Studies have also attempted to increase feasibility by 123 

reducing the quantity of DTC model parameters (Duan et al., 2014; Holmes et al., 2013), or 124 

including additional data (e.g., spatially adjacent LST pixels or monthly mean) (Quan et al., 2014; 125 

Quan et al., 2018; Zhou et al., 2013). Accuracies and feasibilities of different DTC models have 126 

been comprehensively evaluated and summarized by Duan et al. (2012) and Hong et al. (2018). 127 

DTC-based models have clear mathematical formulas and are easily applicable; however, 128 

the equations cannot be resolved if enough clear-sky observations (≥4) per day are not available. 129 

Liu et al. (2017b) increased the clear-sky samples available to the DTC model by combining it 130 

with a spatial inverse distance-weighted interpolation; however, such interpolation methods are 131 

unreliable when cloud coverage has large spatiotemporal scales (Vinnikov et al., 2008). In addition, 132 

DTC models determine interpolation accuracy, although model selection is difficult for various 133 

study areas. Accordingly, Wu et al. (2019) utilized a convolutional neural network (CNN) to 134 

reconstruct the missing GEO LSTs from spatiotemporally adjacent pixels, a functional approach 135 

for larger missing regions. Some other spatiotemporal interpolation methods were also designed 136 

for GEO LSTs, such as reproducing kernel Hilbert space (RKHS) interpolator (Van den Bergh et 137 

al., 2007), multi-channel singular spectrum analysis (M-SSA) (Ghafarian et al., 2012), data 138 
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interpolating empirical orthogonal functions (DINEOF) (Beckers et al., 2014), and Fourier 139 

functions (Liu et al., 2017a). Ultimately, all spatiotemporal interpolation methods are affected by 140 

terrain complexity and referenced clear-sky pixels’ distributions, as well as fill gaps with 141 

hypothetical “clear-sky” LSTs; however, cloud cooling (warming) effects on LST during the 142 

daytime (nighttime) cannot be ignored (Ermida et al., 2019). In addition, few studies have tested 143 

spatiotemporal interpolation methods using the ABI LST. 144 

Considering the straightforward physical process, the SEB-based method represents one of 145 

the most promising solutions for cloudy-sky GEO LST estimation. Jin (2000) proposed an SEB-146 

based method containing two primary steps: 1) reconstruct hypothetical LSTs based on 147 

neighboring observed pixels, and 2) superpose the cloud effect corrections estimated from surface 148 

insolation, air temperature, wind speed, and other variables. Essentially, it uses an interpolation 149 

method before correcting the interpolated LSTs to realistic cloudy-sky LSTs based on SEB. Lu et 150 

al. (2011) adjusted the algorithm for SEVIRI LST by utilizing only the temporal series. A 151 

combined diurnal cycle model of downward solar radiation (DSR) was designed to reconstruct 152 

hypothetical LST values (Zhang et al., 2015b); however, the previous SEB-based methods remain 153 

restricted by the limitations of interpolation and only work when there are sufficient nearby clear-154 

sky observations. In addition, local meteorological parameters are required, which considerably 155 

limits their feasibility over larger spatial scales. More importantly, traditional SEB-based methods 156 

were driven by DSR, implying that the nighttime all-sky LST could not be obtained. The SEB-157 

based method was also tested by Feng Yun-2D GEO LSTs, and a continuous DTC series was 158 

generated assuming negligible nighttime cloud effects (Zhang et al., 2017). A revised SEB 159 

algorithm was developed by Martins et al. (2019) for SEVIRI LST, where an iteration method was 160 

employed by adjusting LST and turbulent heat fluxes to meet SEB during periods of cloud cover, 161 
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of which parameterization schemes of turbulent heat fluxes and radiation components were from 162 

MSG/SEVIRI Satellite Application Facility on Land Surface Analysis (LSA-SAF) product suite; 163 

however, heat flux estimation generally has higher uncertainty than LST retrieval, and thus in SEB 164 

fitting step, the iteratively adjusted cloudy-sky LSTs could be affected by initial value and heat 165 

fluxes’ accuracy. 166 

Furthermore, previous studies have rarely discussed pixel recovery and algorithm 167 

robustness toward cloud-contaminated pixels. Partially cloud-covered pixels can be retrieved, 168 

albeit with substantial bias (Ma et al., 2020; Yang et al., 2019), and accidentally interpolating or 169 

fusing contaminated pixels will introduce significant uncertainty to the filled results, thereby 170 

restricting the application of the current cloudy-sky GEO LST estimation algorithms. 171 

Jia et al. (2021) estimated the cloudy-sky Visible Infrared Imaging Radiometer Suite 172 

(VIIRS) LSTs by assimilating the noon clear-sky retrievals to a temporal LST evolving model, 173 

and simulated LSTs on cloudy days were corrected from satellite radiation products based on SEB. 174 

By considering the importance and the scarcity of the all-sky GEO LST, here, the preliminary 175 

algorithm was further refined to generate an all-sky, hourly LST product from GOES-16 ABI in 176 

pursuit of three primary objectives: 1) design an innovative spatiotemporal dynamic model and 177 

assimilation scheme to increase algorithm robustness and take full advantage of the high temporal 178 

resolution of ABI LST data; 2) propose a novel, diurnal cloud effect estimation method that can 179 

recover complete DTCs, and calculate accurate daily mean LSTs; and 3) effectively recover 180 

abnormally-retrieved LSTs mainly caused by partial cloud coverage. The first 2-km, all-sky, 181 

hourly LST product was produced from July 2017 to June 2021, and it was comprehensively 182 

assessed over the contiguous US (CONUS) and Mexico. 183 

 184 
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2. Data and methods 185 

2.1 Data 186 

This study assimilated the official ABI LSTs into a spatiotemporal dynamic model 187 

constructed by European Centre for Medium-range Weather Forecasts (ECMWF) Reanalysis v.5 188 

(ERA5), and the cloud effects were primarily estimated by satellite products from ABI, Clouds 189 

and Earth's Radiant Energy Systems (CERES), MODIS, and Global LAnd Surface Satellite 190 

(GLASS). Eighteen ground sites from the Surface Radiation (SURFRAD) and core AmeriFlux 191 

networks were used for ground validation. Further information is provided below, where the basic 192 

input data are listed in Table 1, and the site metadata are presented in Table 2. 193 

2.1.1 Satellite and reanalysis products 194 

The official National Oceanic and Atmospheric Administration (NOAA) GOES-16 ABI 195 

LST was considered the target for all-sky diurnal LST estimates, while the GOES-16 ABI DSR 196 

and cloud top temperature (CTT) were used to calculate the diurnal cloud radiative effect (CRE). 197 

GOES-16 was launched in November 2016, and its LST product was retrieved using a split-198 

window method (Yu and Yu, 2018). The longest set of NOAA ABI LSTs was available from mid-199 

2017; thus, the all-sky diurnal LST from July 1, 2017, was released. It provides 10-km hourly LST 200 

over North and South America (full disk), and 2-km hourly data (selected for the present study) 201 

covering the CONUS and Mexico. The GOES-16 ABI LST reached its provisional maturity in 202 

March 2018, achieving stable accuracy based on site validation (Yu et al., 2018). The GOES-16 203 

ABI DSR product combines forward and backward algorithms to estimate reflection and 204 

transmission, accounting for all major interactions of radiation between the atmosphere and surface. 205 

Both the visible and infrared channels were utilized with other inputs (e.g., albedo and atmospheric 206 

composition) to retrieve surface DSR (Laszlo et al., 2020). The NOAA officially released GOES-207 
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16 ABI CTT (Heidinger et al., 2010; Heidinger et al., 2020) is retrieved simultaneously with cloud 208 

top height and pressure for each cloudy pixel, using an analytical model of infrared radiative 209 

transfer embedded into an optimal retrieval methodology. The ABI observations for bands at 11, 210 

12, and 13.3 µm were used to characterize cloud microphysical information. CTT was utilized to 211 

estimate cloudy-sky downward longwave (DLW) radiation, and both atmospheric variables (DSR 212 

and CTT) were interpolated bilinearly to align with the spatial scale of ABI LST data. 213 

Cloud shortwave net radiative forcing is the difference between all-sky DSR and the 214 

theoretical clear-sky DSR, which is essential for the cloud cooling/warming effect estimation, thus 215 

theoretical clear-sky DSR on cloudy times is required. The CERES clear-sky DSR product was 216 

employed. Specifically, the CERES SYN1-deg product provides hourly, spatiotemporally 217 

continuous surface radiation products by retrieving observations from both polar-orbiting and 218 

GEO satellites (Kato et al., 2018). Based on the Fu–Liou radiative transfer theory (Fu et al., 1997), 219 

the theoretical clear-sky DSR was obtained by removing the cloud impact estimates from multiple 220 

data sources, including microwave observations.  221 

The CERES project aims to analyze the radiation budget at atmosphere and surface levels; 222 

thus, it retrieves the theoretical clear-sky DSR at cloudy times to estimate CRE. We directly take 223 

advantage of the CERES clear-sky DSR product, but use GOES-16 all-sky DSR rather than 224 

CERES all-sky DSR because the former has a higher spatial resolution. As clear-sky DSR has 225 

limited spatial heterogeneity, CERES clear-sky DSR was downscaled by bilinear interpolation.  226 

Auxiliary input satellite data, such as a digital elevation model (DEM), were used for 227 

modeled LST downscaling (Danielson and Gesch, 2011). The VIIRS all-sky broadband emissivity 228 

(BBE) product was used to estimate the modeled clear-sky LST series, and was spectrally adjusted 229 

from the historical Advanced Spaceborne Thermal Emission and Reflection Radiometer Global 230 
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Emissivity Dataset (ASTER-GED) and MODIS land surface emissivity product (Wang et al., 231 

2019). Cloudy pixels were replaced by the mean value of available adjacent grids within 2.5° of 232 

the same surface type. MODIS land cover data (MCD12Q1) (Sulla-Menashe and Friedl, 2018) 233 

were used to select similar pixels in a spatial window, and aggregated (water, forest, low vegetation, 234 

urban, and ice/snow) to increase classification accuracy. MODIS albedo (Schaaf et al., 2002) has 235 

been widely employed in SEB-related studies (He et al., 2014; Jia et al., 2020). Here, surface 236 

albedo was used for shortwave CRE calculation after a bilinear interpolation in cloudy time, and 237 

it was assumed that values would remain relatively stable in the neighboring days. The all-sky 238 

GLASS leaf area index (LAI) was utilized for estimating energy partitioning (Liang et al., 2021). 239 

All auxiliary data have a higher spatial resolution, and thus, have been aggregated to 2 km to match 240 

the dominant spatial scale used. 241 

ERA5 (Hersbach et al., 2020) provides simulated hourly, clear-sky DLW and upward 242 

longwave (ULW) radiation for creating a clear-sky LST dynamic model, in addition to providing 243 

column water vapor (CWV) for DLW parameterizations. Clear-sky DLW and ULW were 244 

simulated by ERA5 for the same atmospheric and meteorological conditions as the corresponding 245 

representative scenario, but assuming clouds were absent. The all-sky ERA5 skin temperature was 246 

not used here, as reanalysis datasets primarily involve simulated clouds (Wang and Dickinson, 247 

2013). The metadata for all input information are summarized in Table 1. 248 

Table 1. Metadata for all-sky diurnal LST input. 249 

Product Variable Spatial 

resolution 

Temporal 

resolution 

Usage 

ABI LST 2-km hourly clear-sky GEO LST 

ERA5 clear-sky DLW 

and ULW 

0.25° hourly LST dynamic model 
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VIIRS BBE 1-km daily LST dynamic model, longwave CRE 

GMTED2010 DEM 1-km - downscaling 

MODIS land cover type 500-m yearly neighboring pixel selection 

ABI DSR 0.25° hourly shortwave CRE 

CERES clear-sky DSR 1° hourly shortwave CRE 

MODIS surface albedo 500-m daily shortwave CRE 

ABI CTT 2-km hourly longwave CRE 

ERA5 CWV 0.25° hourly longwave CRE 

GLASS LAI 500-m daily energy partitioning 

 250 

In addition, in order to demonstrate the advancement of the proposed all-sky diurnal LST, 251 

we also included two available all-sky skin temperature reanalysis datasets for accuracy 252 

comparison. As there were no available satellite-derived all-sky hourly LSTs over the CONUS 253 

before this study, skin temperatures from ERA5-Land and North American Land Data 254 

Assimilation System (NLDAS) were employed and validated by sites at different hours of a day 255 

for accuracy comparison. ERA5-Land replays of the land component of the ERA5 climate 256 

reanalysis with a finer spatial resolution (0.1°) at an hourly scale. NLDAS aims to provide spatially 257 

and temporally consistent land surface model datasets by reanalyzing observations to support 258 

modeling activities. GOES surface brightness temperature is considered the essential forcing data 259 

(Pinker et al., 2003). Hourly skin temperature with 0.125° resolution from the NLDAS Noah model 260 

has been chosen in this study. Both reanalysis skin temperature data were downscaled to 2 km 261 

based on elevation (Duan et al., 2017). 262 

2.1.2 Ground measurements 263 

Comprehensive validation using ground-based measurements is essential for the 264 

assessment and application of diurnal LST products. As widely distributed sites can encompass 265 

different climates and land cover types, 18 in situ sites from the SURFRAD (7) and core 266 
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AmeriFlux (11) networks were employed for the all-sky diurnal LST validation. SURFRAD was 267 

established in 1993 through the support of the NOAA’s Office of Global Programs, with an aim 268 

to provide climate research with precise, continuous, long-term ground references of the surface 269 

radiation records over the US (Augustine et al., 2000). It has been commonly utilized for surface 270 

radiation product assessment (Jiang et al., 2018; Zeng et al., 2020; Zhou et al., 2018), and was thus 271 

selected here to validate the SEB accuracy from satellite-based estimates. Core AmeriFlux sites 272 

are flux towers providing timely, high-quality, and continuous data, with the basic objective to 273 

ensure high-resolution data collection across a broad range of ecosystems and locations in the US. 274 

The sites utilized here included ULW and DLW observations (AmeriFlux, 2021), and ground 275 

measured LSTs were computed using ULW, DLW, and all-sky VIIRS BBE by Eq. 1 in Jia et al. 276 

(2021), based on the Stefan–Boltzmann law. The site location map can be seen in Figure 1, with 277 

site details listed in Table 2. 278 

 279 

Figure 1. Distribution of the 18 sites with landcover types from Surface Radiation (SURFRAD) and Core 280 

AmeriFlux networks. 281 
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Table 2. Metadata for the in situ sites. 282 

No. Name Lat. (°) Long. (°) Elev. (m) Land cover Period  

1 BND 40.0519 -88.3731 230 cropland 2018–2021 

2 FPK 48.3078 -105.1017 634 grassland 2018–2021 

3 GWN 34.2547 -89.8729 98 pastureland 2018–2021 

4 DRA 36.6237 -116.0195 1007 arid shrubland 2018–2021 

5 PSU 40.7201 -77.9309 376 cropland 2018–2021 

6 SXF 43.7340 -96.6233 473 grassland 2018–2021 

7 TBL 40.1250 -105.2368 1689 grass and shrub 2018–2021 

8 US-ARM 36.6058 -97.4888 314 cropland 2018–2021 

9 US-Ho1 45.2041 -68.7402 60 forest 2018–2020 

10 US-Los 46.0827 -89.9792 480 wetland 2018–2021 

11 US-MMS 39.3232 -86.4131 275 forest 2018–2021 

12 US-MOz 38.7441 -92.2000 219 forest 2018–2019 

13 US-NC2 35.8030 -76.6685 5 forest 2018–2020 

14 US-NE1 41.1651 -96.4766 361 cropland 2018–2020 

15 US-Ro5 44.6910 -93.0576 283 cropland 2018–2021 

16 US-SRM 31.8214 -110.8661 1120 woody savannas 2018–2021 

17 US-Ton 38.4309 -120.9660 177 woody savannas 2018–2020 
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18 US-UMB 45.5598 -84.7138 234 forest 2018–2020 

 283 

Site observations with low-quality flags in the raw records were filtered out during preprocessing. 284 

SURFRAD sites have a 1-min temporal resolution, and the raw ground observations were 285 

extracted and averaged within a 15-min time window, centered on the satellite recording time. 286 

Core AmeriFlux sites have a 30-min temporal resolution, and only the site samples within the 15-287 

min time window of satellite data acquisition were utilized for validation. Bias, root-mean-square 288 

error (RMSE), and the coefficient of determination (R2) were the validation indices used. The 289 

validation samples were extracted from the site locations, and sample accuracies of diurnal all-sky 290 

LSTs and GOES-16 LSTs were compared during daytime and nighttime, from July 2018 to June 291 

2021 after GOES-16 reached provisional maturity (Yu et al., 2018). As only SURFRAD sites have 292 

1-min observations, they were employed for daily mean LST validation. In addition, only high-293 

quality ground measurements that were fully observed (24 × 60 high-quality records in a day) were 294 

averaged to obtain the daily mean references. 295 

2.2 Framework 296 

The conceptual flowchart of the proposed SEB-based, all-sky, hourly LST estimation 297 

method is shown in Figure 2; it can be divided into three primary steps: 1) an original 298 

spatiotemporal dynamic model of LST was constructed from ERA5 data; 2) after cleaning likely 299 

cloud-contaminated pixels, continuous LST series were reconstructed by assimilating the official 300 

clear-sky ABI LST to the dynamic model from spatial and temporal dimensions; and 3) diurnal 301 

cloud effects were superimposed on cloudy time estimated by an innovative optimization method 302 

from satellite radiation products. 303 
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 304 

Figure 2. Flowchart of the all-sky, hourly land surface temperature (LST) product generation from the 305 

Advanced Baseline Imager (ABI) data: DLW, downward longwave radiation; DSR, downward shortwave 306 

radiation; ULW, upward longwave radiation; CRE, cloud radiative effect; BBE, broadband emissivity; and 307 

ΔTs, cloud effects on LST. 308 

 309 

In the first step, a clear-sky LST dynamic model was built from ERA5 using a 3-D Kalman 310 

filter (KF). ERA5 released the simulated clear-sky ULW and DLW radiations, which are used for 311 

computing clear-sky LST combined with all-sky BBE (Wang et al., 2019). After downscaling, a 312 

spatiotemporal dynamic model was constructed for each pixel location using the simulated LST 313 

series (Section 2.3). Continuous simulations in clear-sky conditions rather than directly modeled 314 

skin temperatures were used in this study because the realistic cloud effects from the available 315 

radiation satellite products were superposed in the final step. ERA5 clear-sky fluxes are simulated 316 
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by the real atmospheric condition so that they can still provide the LST variation signals caused 317 

by near-surface meteorological changes (e.g., advective cold air movement). 318 

In the second step, continuous LSTs were obtained by assimilating the official ABI LST to 319 

the dynamic model. Before the assimilation, a partially cloud-contaminated pixel was identified 320 

when: 1) its absolute difference with the corresponding simulated LST was significantly larger 321 

(three standard deviations) than other days within ±15 days, and 2) surrounding cloudy pixels 322 

were >50% of the spatial window. Detected likely cloud-contaminated pixels were masked to be 323 

recovered. Subsequently, clear-sky ABI LSTs within a spatial window were assimilated into the 324 

spatiotemporal dynamic model to correct the simulation (Section 2.4). After processing the 325 

prediction from the corrected results, hypothetical clear-sky LSTs were reconstructed for missing 326 

or likely cloud-contaminated pixels. 327 

In the third step (Section 2.5), shortwave CRE was acquired from current land surface 328 

albedo and clear-sky/all-sky DSR satellite products. Estimating longwave CRE required cloudy-329 

sky LST that is unavailable; therefore, it was assumed that the initial cloud effects (ΔTs) were 0 K, 330 

and the hypothetical LST was used for the initial CRE calculation. By converting total CRE to the 331 

cloud heat effect after energy partitioning, an updated ΔTs was calculated, and the longwave CRE 332 

was recomputed. To reduce the difference between the CREs of the two loops, ΔTs was adjusted 333 

and iteratively reprocessed using the previous steps until the SEB was balanced. Subsequently, 334 

optimal ΔTs was obtained and used to correct the hypothetical LST during cloudy periods. All-sky 335 

diurnal LST was the combination of clear-sky LST in the second step and the estimated cloudy-336 

sky LST in the third step. 337 

 338 
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2.3 Spatiotemporal dynamic model 339 

An original spatiotemporal dynamic model was designed to spatiotemporally characterize 340 

the simulated clear-sky LST dynamics around a target pixel. The simulated clear-sky LST was 341 

calculated from the ERA5 clear-sky longwave radiations and all-sky BBE (Wang et al., 2019), 342 

according to the Stefan–Boltzmann law (Liang et al., 2010). To match the spatial scale, the 343 

simulated LST was preliminarily downscaled to 2-km using elevational information (Duan et al., 344 

2017), and the resulting spatiotemporal dynamic model was built within a 150-km spatial window, 345 

centered on the target pixel (see Section 3.1), which can be mathematically represented as follows 346 

(Eqs. 1–4): 347 

����,�,�� = 	�,�,�� × ����,�,���� ,                                                  (1) 348 

	�,�,�� = 1 + ���,�,�� �,                                                        (2) 349 

 ����,�,�� = ∑ ��,� ∙ �	�,�,�� × ����,�,�� ��� ,                                       (3) 350 

	�,�,�� = 1 + ���,�,�� �,                                                      (4) 351 

The aforementioned equations hold true for target center pixel c, at time t (defined by the UTC 352 

coordinate) of day d. The spatiotemporal dynamic model includes a temporal module (	�,�,�� ; Eqs. 353 

1 and 2) and a spatial module (	�,�,�� ; Eqs. 3 and 4). ����,�,��  represents the prediction of the 354 

temporal module, which is estimated from ����,�,���� , i.e., the LST 24 h before, as the data in the 355 

modeled series are most closely related to the same time on different days (TOD) (Marullo et al., 356 

2014); thus, samples at the same TOD generally have similar simulated uncertainties, allowing for 357 

corrections made by data assimilation to be easily passed on to the following days. Zc,t,d is the 358 

difference between the simulated LSTs at t of d and d-1, and setting δ = 0.01 avoids a null 359 

denominator. ����,�,��  is the weighted average prediction from pixels of adjacent grids at time t of 360 
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day d (Eqs. 3, 4). Zm,t,d represents the simulated LST difference between center c and one adjacent 361 

pixel m. The spatial module (	�,�,�� ) is activated only when there are valid neighboring ABI LSTs; 362 

moreover, only the surrounding pixels with the same land cover as c were utilized for calculating 363 

����,�,�� , to minimize the bias caused by land cover differences (Nogueira et al., 2021). The MODIS 364 

land cover data (MCD12Q1) were aggregated (water, forest, low vegetation, urban, and ice/snow) 365 

to increase the classification accuracy. Therefore, the total number N equals the available clear-366 

sky ABI pixels with the same land cover in the window, and the weight w was determined by the 367 

relative magnitude of inverse distance between each spatially adjacent pixel and c. The 368 

spatiotemporal dynamic model was constructed with relative variation information of the 369 

simulated LST, rather than the absolute magnitude, because the difference series can remove the 370 

bias and keep the important dynamic modeling signals (Hong et al., 2021). 371 

Before data assimilation is implemented, likely cloud-contaminated ABI LSTs need to be 372 

masked. It was assumed that the simulation might have higher uncertainty, but the modeling 373 

process was stable; thus, when a substantially abnormal difference between satellite retrieval and 374 

model simulation appeared near the clustered cloud pixels, it was more likely to be partially 375 

contaminated. After the spatiotemporal dynamic model was generated, and likely contaminated 376 

observations were removed, clear-sky ABI LSTs were assimilated into the modeling process, and 377 

the errors caused by model downscaling and predictions were corrected continuously. 378 

 379 

2.4 Data assimilation 380 

KF is a data assimilation tool that uses discontinuous observations to correct model 381 

prediction and modeling uncertainty, and ultimately obtains continuous and accurate estimations. 382 
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Each correction step is essentially the weighted average based on relative error magnitudes of 383 

modeling and observation. For example, in Jia et al. (2021), LST time-evolving models are 384 

corrected using satellite clear-sky LST retrievals, and formulate predictions on cloudy time based 385 

on the corrected results. However, this preliminary scheme only utilized the temporal information. 386 

In this study, A 3D-KF was proposed by revising the temporal KF, and a spatial module was 387 

activated when the neighboring ABI LST was observed in a spatial window centered on pixel c. 388 

Adjacent, simulated LSTs were corrected first by corresponding ABI LSTs, and then LST at c 389 

were predicted (Eqs. 3, 4). The spatial module helped the temporal module correct the predictions, 390 

particularly when there were no observations at c, but neighboring ABI LSTs were available. The 391 

temporal module of the 3D-KF was calculated according to Eqs. (5–8): 392 

������ � =  ���� ���! ��� + "���� ,                                               (5) 393 

������ = ������ � + #��(����,� − ������ �),                                    (6) 394 

#'� = (��((�� + ))��,                                                 (7) 395 

(� = (* − #'�)(��,                                                      (8) 396 

where ������ �
 is the prior estimate of the temporal dynamic model ( ���� , representing Eqs. 1, 2) 397 

at center c on day d, from the previous filtered outcome ���! ���. A symbol with – above indicates 398 

that it is a prior prediction. And then the prediction error "����  is propagated to (��. The initial 399 

modeling error was calculated by referring to the corresponding ABI LST at c, which did not affect 400 

the overall accuracy because it is continuously corrected by observations, and the first computation 401 

date is one month earlier than the starting date of the released product. ������  is the corrected result 402 

by filtering (#��) the prior prediction (������ �
) using the ABI retrieval ����,� (Eq. 6). The retrieval 403 

error covariance R was set to 4 (Yu and Yu, 2020; Yu et al., 2019). #�� is based on the relative 404 
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magnitudes of (�� and R (Eq. 7), and the prediction uncertainty ((��) is then corrected to (� by 405 

#��, and I is a unit matrix (Eq. 8). More details can be found in Jia et al. (2021). The spatial module 406 

is mathematically represented by Eqs. (9, 10): 407 

����,��� = +�,� +  #��(����,� − +�,�),                                        (9) 408 

������ � = ∑(,�- ./0�,�-� �1�- )� ,                                                 (10) 409 

Eqs. 9–10 show that spatial KF (#'�) was implemented to assimilate surrounding clear-sky 410 

retrieval (����,�) into spatially neighboring simulations (+�,�) with simulation error covariance 411 

S, and the corrected spatial model prediction ����,���  was obtained at m with an error "�� . #'� is 412 

calculated from S and R, similar to Eq. 7. The S was computed by referring to the ABI LSTs in the 413 

spatial window and corrected to (��, similar to Eq. 8. The predicted LST at c (������ �
 in Eq. 10) 414 

was computed by averaging predictions from all ����,���  in the spatial dynamic model ( �� , 415 

representing Eqs. 3, 4), where N equals the available retrieved ABI LST, of which the prediction 416 

error is (���. 417 

On clear-sky conditions, the filtered LST estimate (���! �) of c on d was the final clear-sky 418 

LST output, by averaging the results from the temporal (������ , Eq. 6) and the spatial (������ �
, Eq. 419 

10) KF. Weights were based on the relative magnitude of the temporal and spatial module 420 

uncertainties (Eq. 11). 421 

���! � = 2  3�-43�-4�3� ������ +  3�3�-4�3� ������ �,   clear − sky   
3�-43�-4�34� ������ � +  34�3�-4�34� ������ �, cloudy − sky                            (11) 422 
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On cloudy-sky conditions, ���! �  is the reconstructed LST on cloudy-sky, the weighted 423 

average from predictions from ������ �
 (Eq. 5) and ������ �

 (Eq. 10). Cloud effect (ΔTs) correction is 424 

required to convert the ���! �  to final cloudy-sky LST output: LSTcld = ���! �  + ΔTs. ΔTs is 425 

introduced in Section 2.5. 426 

The dynamic model with KFs was continuously processed for d+1 based on ���! �. The 427 

continuous LST series was reconstructed by 3D-KF, and the diurnal LST at clear-sky was 428 

essentially the weighted spatiotemporal fusion of ABI LSTs and model simulations. Further, the 429 

simulations during cloudy periods were also initially revised; however, the generated hypothetical 430 

LST required further correction by superposing the cloud effects based on SEB during day and 431 

nighttime. 432 

 433 

2.5 Diurnal cloud effect 434 

By reflecting the state of energy exchange, LST is an important component of the SEB (Eq. 435 

12): 436 

)@ = A�)(1 − B) + CA�D −  EC���F = G + �H + I,                       (12) 437 

where )@ is the net radiation, B is the surface albedo, C is the broadband emissivity (BBE), and E 438 

is the Stefan–Boltzmann constant. The available energy is partitioned into ground heat (G), latent 439 

heat (LE), and sensible heat (H), and finally affects LST as the surface response. By following the 440 

LSA-SAFs evapotranspiration algorithm (Arboleda et al., 2017), G was estimated by partitioning 441 

)@ according to LAI. The energy partitioning parameter is set to 0.15, 0.05, and 0.10 for rocks, 442 

snow, and inland water, respectively (Jia et al., 2021). G can also be expressed using the 443 

conventional force-restore method (Jin and Dickinson, 2000): 444 
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G = JK L0∆N = JK ./0�0�∆N ,                                                      (13) 445 

where JK is the surface thermal conductivity (W·m–1·K–1), and ∆ℎ is the depth of the subsurface 446 

layer (0.1 m). By assuming that the subsurface layer temperature (��) is insensitive to SEB, Eq. 447 

13 can be revised as follows (Eq. 14): 448 

LPL./0 = LL./0 QJK ./0�0�∆N R ≈ 'T∆N,                                                  (14) 449 

where UG can be considered the change in ground heat caused by cloud cover, partitioned from 450 

the CRE. Thus, after estimating JK, the heat change can be converted to the corresponding cloud 451 

effect (ΔTs). Essentially, JK indicated the local sensitivity of LST response to the SEB. By taking 452 

advantage of the high temporal resolution of diurnal LST, a novel method for estimating JKwas 453 

created (Eq. 15): 454 

JK = ∆ℎ PVWWVXXXXXXXXX�P-YXXXXX./0VWWVXXXXXXXXXXXX�./0-YXXXXXXXX,                                                      (15) 455 

where G@ZZ@XXXXXXX (���@ZZ@XXXXXXXXXX) and G�[XXXX (����[XXXXXXX) are the monthly (±15 days) averaged ground heat (clear-456 

sky LST) at noon and sunrise, respectively. It was assumed that morning warming was primarily 457 

due to the radiation budget; the continuous LST series was obtained from data assimilation, and G 458 

was estimated from clear-sky radiation data with LAI. The monthly mean was utilized because the 459 

surface property was assumed to be stable in closing days, while the DTC on any specific day 460 

could be disturbed by meteorological conditions; thus, the difference in LSTs in Eq. 15 may be 461 

too small to generate JK accurately. Monthly averaging can therefore remove these disturbances. 462 

Clear-sky heat and temperature series were chosen to estimate JK, as clear-sky LSTs have a clearer 463 

response to morning warming influenced by SEB. 464 

Therefore, the primary objective of diurnal cloud effect estimation was to quantify the 465 

diurnal CRE. CRE will be estimated by hourly cloudy-sky and clear-sky radiation fluxes in order 466 
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to quantify the impact toward LST from different cloud conditions. Previous studies aiming to 467 

estimate cloudy-sky LST based on SEB have mainly built a linear relationship between DSR and 468 

)@ (Jin, 2000; Yu et al., 2014; Zeng et al., 2018). This is because shortwave net radiation is the 469 

principal driving factor of daytime )@  (Jiang et al., 2018; Wang and Liang, 2009); however, 470 

nighttime cloudy-sky LST cannot be recovered. Instantaneous longwave CRE has historically been 471 

difficult to estimate in previous studies, as such cloudy-sky LSTs are a basic parameter. 472 

Accordingly, an innovative optimization method was created here to determine the diurnal net 473 

CRE by separating the hourly shortwave (CREshort-net) and longwave (CRElong-net) components. 474 

CREshort-net can be easily calculated from surface albedo and the difference of ABI all-sky and 475 

CERES clear-sky DSRs [Eq. 9 in Jia et al. (2018)], whereas CRElong-net needs to be estimated as 476 

follows: 477 

\)H]Z@K�@^� = (CA�D�]� − EC(���[ + _��)F) − (CA�D�][ − EC����][F ),                  (16) 478 

where LSTr was reconstructed by the data assimilation step, and _��, DLWclr, and DLWcld were the 479 

unknown variables. 480 

Current DLW parameterizations are difficult to apply, as most existing satellite-based 481 

algorithms depend on parameters that are not readily accessible from space (Cheng et al., 2019), 482 

such as the liquid water path, vapor pressure, and cloud base temperature. To this end, Wang et al. 483 

(2020) developed a practical all-sky DLW parameterization scheme that employs available 484 

satellite input data. By combining the CERES data, with MODerate resolution atmospheric 485 

TRANsmission (MODTRAN) simulations, a global training database with approximately 55,664 486 

records for cloudy-sky, and 62,806 for clear-sky conditions was constructed. This algorithm has 487 

been used for hourly, all-sky DLW product generation (Letu et al., 2021). Based on the integrated 488 

training samples, the relationship was built using a general parameterization scheme [Eqs. 1 and 2 489 
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in Wang et al. (2020)] and a random forest machine-learning scheme, separately. Two methods 490 

perform close accuracy, achieving greater levels of RMSE (~22 W·m-2) and feasibility over large 491 

regions compared to earlier studies. In the parameterizations, CWV was obtained from ERA5, and 492 

official CTT data is released by the GOES-16 product suite. 493 

As cloudy-sky LST is required for calculating longwave radiative effect (Eq. 16), an 494 

optimization method is necessary to obtain the best _�� to balance the energy in previous equations. 495 

In the initial calculation, _�� was assumed to be 0 K in Eq. 16, and the initial CRE was computed. 496 

After partitioning the CRE to ground heat through the LAI, an updated _�� was estimated using a 497 

predetermined JK ; thus, the CRE can be recomputed. By iteratively comparing the CRE 498 

differences and adjusting _�� (0.05 K in each iteration), the surface energy budget will become 499 

balanced (|ΔCRElong| < 20 W·m-2; see Figure 2). The threshold was not set to 0 W·m-2, as the DLW 500 

parameterization RMSE was ~20 W·m-2 (Wang et al., 2020). 501 

 502 

2.6 Daily mean LST calculation 503 

After retrieving the diurnal, all-sky LST, daily mean LST was readily calculated. To assess 504 

its accuracy, it was validated by site measurement, and the accuracy statistics were compared with 505 

three other results: one was from the official ABI LSTs, where 24 clear-sky values are available 506 

per day. The second is the daily mean from spline-interpolated 24 values in a day, and such 507 

comparison will demonstrate if the diurnal hourly LST of the proposed product is representative 508 

for daily-mean LST calculation, or whether users need to do the interpolation to obtain the daily 509 

mean by themselves. Spline interpolation is a piecewise polynomial interpolation, and it can 510 

accurately capture the variation details as we have 24 values in a diurnal cycle. 511 
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The second was the mean of two LSTs from Aqua (MYD11) at noon and midnight each 512 

day (Ouyang et al., 2012; Xing et al., 2021). This simple method has been commonly utilized in 513 

LST applications, such as temporal upscaling (Chen et al., 2017), evapotranspiration (ET) 514 

estimation (Yao et al., 2013), and permafrost monitoring (Zou et al., 2017). The last method 515 

utilizes a DTC model to interpolate the four observations from Terra + Aqua (MOD11 + MYD11) 516 

and obtain the daily mean LST. Based on a comprehensive review of DTC models (Hong et al., 517 

2018), the GOT09 model (Göttsche and Olesen, 2009) was selected. By assuming day-to-day 518 

change of residual temperature a� = 0 and free attenuation time ts = sunset time – 1, four unknown 519 

parameters were determined via the four observations of MOD11 + MYD11 in a day. More details 520 

about GOT09 can be found at Eq. 2 in Hong et al. (2018). 521 

 522 

3. Results, analysis, and discussion 523 

3.1 Configuration determination 524 

By assuming that 18 evenly distributed sites can represent the general surface conditions 525 

over CONUS, all-sky hourly LSTs were generated using different window sizes of the dynamic 526 

model (different schemes), and then the accuracies were compared to determine the optimal 527 

configuration. Owing to computational resource limitations, only samples from different schemes 528 

in 2019 (N = 148,008 in each scheme) were used in the test. 529 
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 530 

Figure 3. Overall accuracy (RMSE) of diurnal LSTs according to variable spatial window size for (a) clear- 531 

and (b) cloudy skies. 532 

From Figure 3, it can be observed that the overall RMSE decreased when the spatial 533 

window size increased from 0 to 150 km, especially at night (Figure 3a and 3b). By including the 534 

spatial module, the nighttime cloudy-sky LST can improve the RMSE by ~0.4 K. Daytime LST 535 

showed a smaller response for window size selection. Further, it was inferred that daytime LSTs 536 

have stronger heterogeneity due to the SEB warming effect; thus, adjacent pixels at relatively 537 

farther locations may not benefit model correction, while larger spatial windows will substantially 538 

increase computation time. Accordingly, based on the site assessments over the CONUS, a 150-539 

km window size was selected for data production.  540 

  541 
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Figure 4. Overall accuracy (RMSE) during short-term cloud duration, with and without cloud effect 542 

correction, for the (a) daytime and (b) nighttime. 543 

 In order to check the necessity of cloud effect correction for short-term cloud duration 544 

cases, corresponding analysis are shown in Figure 4. It indicates that cloud effects could be 545 

neglected if the cloud coverage time was <2 h. The hypothetical clear-sky LST of 3D-KF during 546 

short-term cloud coverage (≤6 h) was tested, and the impacts of adding the estimated cloud effects 547 

were analyzed. It was revealed that cases of cloud coverage <2 h may increase uncertainty after 548 

adding the cloud effects during both the daytime and nighttime (Figure 4a and 4b). Previous 549 

research has demonstrated that the DTC interpolation model works well when the cloud duration 550 

is <4 h (Göttsche and Olesen, 2001), as the LSTs in such circumstances may not be considerably 551 

affected by clouds. Compared with the analysis in Figure 4, we determined that cloud effects were 552 

ignored if coverage was <2 h in the production. Moreover, daytime hypothetical clear-sky LST 553 

uncertainty increases with cloud duration (Figure 4a), and the cloud effect does well to address the 554 

error accumulation. Following the basic configuration tests, the all-sky hourly LSTs were derived 555 

and assessed. 556 

 557 

3.2 Validation 558 

The overall accuracy of the diurnal all-sky LST estimation using in situ measurements of 559 

the 18 field sites is shown in Figure 5. The validation results for the all-sky LSTs, and the official 560 

NOAA ABI LSTs were compared during daytime and nighttime from July 2018 to June 2021. 561 
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 562 

 563 

 564 

 565 
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Figure 5. Density scatterplots of LST samples from (a) present study, daytime clear-sky; (b) present study, 566 

nighttime clear-sky; (c) official ABI, daytime clear-sky; (d) official ABI, nighttime clear-sky; (e) present 567 

study, daytime cloudy-sky; and (f) present study, nighttime cloudy-sky. 568 

 569 

The resulting product from the present study had higher accuracies than the official NOAA 570 

ABI clear-sky LST product, during both the daytime and nighttime. The daytime clear-sky samples 571 

of this study (Figure 5a) had an RMSE of 2.37 K (N = 85,565), whereas the corresponding official 572 

ABI LST product had an RMSE of 2.73 K (Figure 5c). The nighttime clear-sky samples (Figure 573 

5b) had an RMSE of 2.24 K (N = 92,179), whereas the official ABI LST product had an RMSE of 574 

2.86 K (Figure 5d). The latter product included some cloud-contaminated samples, particularly at 575 

night (Figure 5d), even all extracted samples of the NOAA ABI LST were marked as “good-576 

retrieval” in the quality control flag. The contaminated pixels were distributed across Figures 5c 577 

and d, thereby creating a larger negative bias in the clear-sky validations. 578 

Daytime cloudy-sky samples had an RMSE of 2.78 K (N = 130,488; Figure 5e), and 579 

cloudy-sky nighttime samples had an RMSE of 2.23 K (N = 100,068; Figure 5f). Based on all 580 

hourly, all-sky LST samples, the overall RMSE was 2.44 K, with a bias of -0.19 K, and an R2 of 581 

0.97 (N = 408,300). Likely cloud-contaminated cases identified in the data assimilation step were 582 

validated in Figure 6, while the corresponding corrected results were also included for comparison. 583 
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 584 

Figure 6. Scatterplot of likely cloud-contaminated samples from the official NOAA ABI and corrected 585 

results. 586 

 587 

Figure 6 indicates that the likely cloud-contaminated pixels were recovered well. The 588 

marked official NOAA ABI LST samples had an overall RMSE of 7.99 K, largely driven by the 589 

negative bias of -5.58 K. Partially cloud-covered pixels typically have lower BT values than 590 

ground signals, resulting in abnormally cool LSTs in the images. Besides, some samples with 591 

considerably positive bias were also detected, which might be caused by the difference of the 592 

realistic surface emissivity and the climatological emissivity used in the GOES-16 LST production 593 

(Yu and Yu, 2020), and BTs with low signal-noise-ratio could be another reason. Previous studies 594 

generally ignored these disturbances that may introduce considerable uncertainties into the 595 

interpolation results. Comparatively, the accuracy of the recovered samples from this study was 596 

substantially improved (RMSE = 3.57 K). It should be noted that some clear-sky pixels might be 597 

included in Figure 6, but such misclassification won’t affect the overall cloudy-sky LST estimation 598 

accuracy, owing to the high tolerance toward long cloud duration (see Section 3.3). 599 
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 600 

Figure 7. Comparison of the RMSE for all sites, during the (a) daytime and (b) nighttime. The radius shows 601 

RMSE values (unit: K), and exterior numbers represent the site order as indicated in Table 2. 602 

The RMSE value comparisons for all the sites are shown in Figure 7. This suggests that 603 

the all-sky LST derived here was more accurate than the NOAA ABI across nearly all sites. NOAA 604 

ABI generally had larger RMSE patterns, especially at US-Ro5 (site 15) and US-UMB (site 18) 605 

during the nighttime (Figures 7b). Clear-sky samples of all-sky LST displayed relatively consistent 606 

accuracy levels across both the daytime and nighttime. Further, the cloudy-sky estimation accuracy 607 

was comparable to that of clear-sky LST estimates, but with a lower accuracy at TBL (site 7) and 608 

US-SRM (site 16) during the daytime. Based on further analyses, high elevations of the two sites 609 

might be the major reason that causes lower site surface representativeness (Figure 10c) and larger 610 

estimation uncertainties (Figure 14a).  611 
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 612 

 613 

Figure 8. Comparison of the (a, b) RMSE and (c, d) Bias by hours in a day at (a, c) clear-sky and (b, d) 614 

cloudy-sky. Samples have been converted to the local time of each site. 615 

The clear-sky and cloudy-sky LSTs at different hours in a day have been assessed, of which 616 

accuracies have also been compared with two hourly all-sky LST reanalysis datasets (Figure 8) to 617 

highlight the superiority of the proposed data. As the only currently available all-sky LST driven 618 

by satellite retrieval over CONUS and Mexico, the proposed all-sky LST performs considerably 619 

better than the simulated datasets at different hours under both clear-sky and cloudy-sky. RMSEs 620 
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of the present study vary between 2.0-3.1 K at different times with bias within ± 0.7 K, and RMSEs 621 

at noon are relatively larger (Figure 8a and 8b) partly because the daytime surface is warmer that 622 

may increase the surface heterogeneity issue of site validation (Ma et al., 2021; Yoo et al., 2018). 623 

Reanalysis skin temperatures show a similar RMSE peak at noon; however, the uncertainty of 624 

NLDAS is large at night, which is attributed to the substantial cold bias (Figure 8c and 8d) (Xia et 625 

al., 2015). In comparison, ERA5-Land is more accurate than NLDAS, and even biased simulation 626 

is still an issue (Nogueira et al., 2021). 627 

Accuracies of hourly LST reconstruction from previous algorithms and products have been 628 

summarized in Table 3. It shows the scarcity of hourly all-sky LST products, and the proposed all-629 

sky hourly LST data perform high accuracy and advancement. It should be noted that some studies 630 

utilized an assessment method by comparing reconstructed LST with the officially retrieved LST 631 

values at artificial gaps. Such an assessment method has little surface heterogeneity issue, whereas 632 

it may not reflect the realistic cloud effect. Moreover, it may overrate the accuracy and feasibility 633 

of interpolation-based methods because artificial gaps generally have considerably smaller 634 

spatiotemporal scales than the realistic cloud, and they are essentially clear-sky LST series that 635 

have a smooth DTC curve while the cloudy-sky LST does not (Figure 10a). 636 

Table 3. Accuracy summary of reconstructed hourly LST from previous studies. 637 

Paper Methodology Outcome Accuracy 

(RMSE) 

Sensor  Reference 

data 

Dumitrescu et 

al. (2020) 

Fusion with 
ERA5 skin 
temperature 

algorithm 2.46-3.35 K  MSG/SEVIRI officially 
retrieved LST 
at artificial 
gaps 
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Liu et al. 

(2017b) 

DTC model-
based 
interpolation 

algorithm 0.77-1.36 K  FY-2F officially 
retrieved LST 
at artificial 
gaps 

Wu et al. (2019) CNN-based 
interpolation 

algorithm ≤1 K  FY-2G and 
MSG/SEVIRI 

officially 
retrieved LST 
at artificial 
gaps 

Lu et al. (2011) SEB algorithm 5.11-5.55 K MSG/SEVIRI ground site 
measurement 

Zhang et al. 

(2015a) 

DTC model + 
SEB 

algorithm 1.34-1.44 K - site measured 
LST at 
artificial gaps 

Zhang et al. 

(2017) 

SEB algorithm 7 K FY-2D ground site 
measurement 

Martins et al. 

(2019) 

SEB product 2.1-3.7 K MSG/SEVIRI ground site 
measurement 

 638 

All-sky hourly LST provides a great opportunity for LST upscaling. The accuracy of daily 639 

mean LST generated by this study was also evaluated and compared with traditional methods in 640 

Figure 9. 641 

 642 
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 643 

Figure 9. Scatterplots of daily mean LSTs from: (a) directly averaging 24-h values, (b) spline interpolation 644 

24-h values, (c) paired Aqua LSTs, and (d) 4-values (Terra + Aqua) DTC interpolation. 645 

Figure 9 illustrates the daily mean LST accuracies, as estimated from the diurnal all-sky 646 

LSTs, clear-sky NOAA ABI, two Aqua MODIS LSTs, and interpolated four Terra + Aqua MODIS 647 

observations. By directly averaging 24 hourly values, diurnal all-sky LSTs provided high accuracy 648 

estimates of the daily mean LSTs (RMSE = 1.13 K). Figure 9a shows that the daily mean of the 649 

all-sky LST is more accurate than the daily mean of the NOAA ABI for completely clear days 650 

(RMSE = 1.39 K). NOAA ABI had a relatively larger negative bias (Figure 9a), and it was thus 651 

inferred that its daily mean was influenced by cloud contamination. After spline interpolation, the 652 

daily mean LST accuracies were not improved, and the correlated bias was only slightly corrected 653 

(Figure 9b), indicating that users don’t need to interpolate the 24 values for the temporal upscaling. 654 

Daily mean LSTs from averaged MYD11 data (Figure 9c) had the largest RMSE (2.48 K). 655 

After interpolating four observations from Terra and Aqua in a day using the DTC model (Section 656 

2.6), the resulting daily mean had an RMSE of 1.53 K (N = 1250, Figure 9d), similar to what was 657 

derived previously (Hong et al., 2018); however, the requirement of four observations per day 658 

constrained its available sample number. In comparison, diurnal, all-sky LSTs showed superiority 659 
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when estimating daily mean LSTs, and thus has great potential for use in related applications 660 

(Gallego‐Elvira et al., 2016; Yao et al., 2013; Zhi-xia et al., 2011). Temporal analysis is shown 661 

in Figure 10 at hourly and daily-mean scales. 662 

 663 

 664 

 665 

 666 

 667 
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Figure 10. Time series of hourly (a-d) and daily mean (e, f) LSTs at: (a, b, and e) BND and (c, d, and f) 668 

TBL. Hourly LSTs were randomly selected from different seasons in 2020 and converted to local time. 669 

 670 

The hourly and daily mean LST time series are shown in Figure 10 for representative sites 671 

with relatively higher and lower accuracies. Hourly LST variations in Figure 10 a-d reveal that the 672 

proposed all-sky LST well captured the realistic DTC no matter in clear days or cloudy days. 673 

Continuous cloudy days were also recovered, and the overall patterns were well matched (Figure 674 

10a and 10b). Besides, these continuous cloudy cases also indicate the limitation of interpolation-675 

based LST reconstruction methods as they have more various temporal patterns. Relatively larger 676 

biases were found at TBL sites, especially at noontime (Figure 10c), partially due to the higher site 677 

heterogeneity issue at noon.   678 

Time series analysis of daily mean LSTs indicated that the all-sky LSTs were temporally 679 

contiguous, and captured not only the general patterns but also the anomalous variations; in 680 

addition, the accuracy underwent few changes over the years analyzed. The LST series at BND 681 

maintained relatively high levels of accuracy, matching well with the ground-derived 682 

measurements (Figure 10e). Comparatively, the LST series at TBL had the lowest accuracy of the 683 

seven SURFRAD sites, revealing that all-sky LSTs were underestimated, especially in the 684 

summers (Figure 10f). TBL site is at a relatively higher elevation surrounded by more complex 685 

terrain, and the relatively lower surface representativeness of TBL may partly explain the larger 686 

RMSE (Guillevic et al., 2014). The all-sky hourly LSTs were also mapped by randomly choosing 687 

three images from three seasons in 2019 for comparison with the official NOAA ABI data. 688 

Apr. 29, 2019: 1600 (UTC) 689 
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 690 

Aug. 13, 2019: 1900 (UTC) 691 

 692 

Dec. 03, 2019: 2300 (UTC) 693 

 694 

Figure 11. Hourly LSTs (unit: K) for: (a, d, g) all-sky LSTs from the present study; (b, e, h) NOAA ABI 695 

LST; and (c, f, i) the differences between the two. 696 

 697 

Figure 11 suggests that the SEB-based method effectively recovered the all-sky diurnal 698 

LST patterns across different seasons, as well as the successful removal of cloud-contaminated 699 

pixels. The all-sky LSTs in Figure 11a, 11d, and 11g match with the NOAA ABI (Figure 11b, 11e, 700 
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and 11h), and the estimated cloudy-sky LSTs are spatially continuous with the clear-sky pixels. In 701 

addition, based on the differences of all-sky and NOAA ABI LSTs, considerably positive (dark 702 

red) biases were observed along the edge of cloud patterns, as can be seen scattered in the central 703 

area of Figure 11f, and north-eastern area of Figure 11i. The partly cloud-covered pixels typically 704 

had substantially cooler BTs than the pure surface signals, resulting in negative biases 705 

reaching >20 K (Figure 6). Some mismatch appears at the west highland region partially due to 706 

the larger estimation uncertainty (Figure 14a). A detailed analysis of the LST map at the middle 707 

of the CONUS (Figure 11f) was illustrated in Figure 12. 708 

  709 
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 710 

Figure 12. Regional LST maps at the marked place in Figure 11(f): (a) all-sky LST, (b) NOAA ABI, (c) 711 

pixels marked as likely cloud-contaminated, and (d) corresponding false-color image from red, near-712 

infrared, and blue bands. 713 

Figure 12 indicates that all-sky LST can well capture the regional variation with good 714 

spatial consistency. Compared with the clear-sky retrieval of NOAA ABI (Figure 12b), it can 715 

reflect spatial details, no matter at clear-sky (bottom left, Figure 12a) or cloudy-sky (top left, Figure 716 

12). Besides, Figures 12a and 12d illustrate various cloud effects of different clouds: cooling effect 717 

is shown under thick cumulus in the middle, whereas cirrocumulus clouds have little cooling effect 718 

because they pass most solar energy through the atmosphere (top left, top right, and bottom right 719 

in Figure 12d). However, Figure 12a has a smooth effect over the cloud recovered regions. This is 720 

mainly due to the less spatial heterogeneity of cloudy-sky LST. In addition, 3D-KF might have 721 

filtered some spatial texture after fusing the clear-sky retrieval with simulated LSTs. Texture 722 

information from adjacent days is not easily referred to when there is a long cloud duration. Figure 723 
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12c shows that the detected cloud-contaminated pixels are mainly around the cloud pixels; besides, 724 

cloud contamination easily happens under the coverage of cirrocumulus (Figure 12d). 725 

3.3 Impacts of cloud duration and surface elevation 726 

Based on the assessment above, sensitivity analyses were performed to assess the 727 

robustness of the generated all-sky LST product toward extreme cloud and local conditions. 728 

  729 

 730 

Figure 13. Overall accuracy by cloud duration, during the (a) daytime and (c) nighttime; (b, d) display the 731 

corresponding available sample numbers. 732 

As continuous cloud duration for long periods may temporally detrimentally affect 733 

prediction accuracy until an observation is assimilated, the overall accuracy change with increasing 734 

cloud duration was quantified (Figure 13). The analyses revealed that both daytime and nighttime 735 

cloudy-sky LSTs maintained stable RMSEs. Notably, most observed cloud durations are less than 736 

10 days, and the longer cloud duration cases that statistical numbers are less than 100 (<0.1% of 737 

the total number) were ignored (Figure 13b and 13d). Cloud duration information is included in 738 
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the data quality mark, allowing users to perform quantitative analyses for specific regions or 739 

periods they plan to use. 740 

 741 

Figure 14. Accuracy of each site under clear- and cloudy-sky conditions, as a function of (a) surface 742 

elevation and (b) latitude. 743 

The relationship between site accuracy by elevation is shown in Figure 14, revealing the 744 

correlation between accuracy and elevation. As elevation increases, as do terrain complexity and 745 

surface heterogeneity, creating difficulties for modeling simulations (Figure 14a). The impact of 746 

site latitude was also explored, as it determines the view zenith angle (VZA) of the NOAA ABI 747 

LSTs, and it has previously been found that as the VZA increases, retrieval accuracy may decrease 748 

(Yu et al., 2008). However, no such relationship was revealed here, leading to the conclusion that 749 

the all-sky LSTs produced over the CONUS all maintained relatively small VZAs (Figure 14b). 750 

3.4 Land cover-dependent DTC climatology 751 

DTC analyses were implemented to demonstrate that the all-sky LST product can 752 

successfully capture DTC variability. Climatological DTCs for different land cover types were 753 

characterized (Figure 15), and can potentially be used to quantify temperature feedbacks related 754 
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to landcover change, and the orbit drift correction of Advanced Very High Resolution Radiometer 755 

(AVHRR) LST data (Jin and Treadon, 2003). The climatological DTCs are the multiple years’ 756 

averages of DTC for different land cover types, which represent the general variation of DTC and 757 

climatological feedback by ignoring meteorological disturbance in one specific year. 758 

 759 

 760 

Figure 15. Climatological DTCs for different land cover types: (a) forest, (b) shrubland, (c) grassland, (d) 761 

cropland, (e) urban, and (f) barren area. 762 

Landcover type appears to be a major factor when determining DTCs, where forests 763 

displayed the smallest diurnal temperature range (DTR), and barren areas had the largest DTR, 764 

capable of reaching ≥30 K in summer. In addition, the temperature rise time of DTCs got delayed 765 

from summer to winter as a result of the sunrise time change based on SEB. Barren areas had the 766 

strongest response toward SEB, at both daily and seasonal scales, as local evapotranspiration is 767 

limited, and most available surface energy is partitioned into sensible and ground heat. Notably, 768 
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geolocations (latitude and elevation) are also key factors influencing DTCs, and the cycle 769 

differences for various land cover types may be in part affected by them, e.g., crops are mainly at 770 

relatively high latitudes (Figure 1) and have smaller LSTs and DTCs. 771 

 772 

4. Conclusions 773 

By characterizing high-frequency surface thermal dynamics at medium spatial scales, GEO 774 

LSTs become invaluable for relevant studies; however, cloud coverage creates missing data and 775 

abnormal retrievals of these products, and there are few all-sky GEO LST products available to 776 

the public. Methods for GEO LST recovery have been reviewed here, revealing the following 777 

conclusions: the model fusion-based method is guaranteed gap-free, although the simulation on 778 

cloudy days is rarely corrected effectively; interpolation-based methods have lower accuracy and 779 

feasibility across larger cloud scales, nor can their results reflect realistic cloud effects on LSTs; 780 

and traditional SEB-based methods can estimate cloudy-sky LSTs, but the input requirements 781 

severely constrain its application, particularly at nighttime. In addition, few studies have discussed 782 

partial cloud contamination, an issue creating considerable uncertainty when interpolated. 783 

Based on the SEB, a 2-km all-sky, diurnal hourly LST product over the CONUS and 784 

Mexico was created from July 2017 to June 2021. First, an original spatiotemporal dynamic model 785 

was built by ERA5, and GOES-16 ABI LST was then assimilated using 3D-KF. Finally, an 786 

innovative optimization method was proposed to estimate the diurnal cloud effects from multiple 787 

satellite radiation products, and partially cloud-contaminated pixels were also recovered. 788 

The comprehensive assessment demonstrated the high accuracy and robustness of the all-789 

sky LSTs using 18 sites from SURFRAD and core AmeriFlux. The RMSE values of the generated 790 
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clear-sky samples for the daytime and nighttime were 2.37 and 2.24 K, respectively, which is a 791 

notable improvement over the official NOAA ABI. Further, the cloudy-sky samples during the 792 

daytime and nighttime revealed RMSE values of 2.78 and 2.23 K, respectively. Accordingly, the 793 

generated all-sky LSTs had an overall RMSE of 2.44 K, with a bias of -0.19 K and an R2 value of 794 

0.97 (N = 408,300), and RMSEs at different times in a day varied from 2.0 to 3.1 K. By simply 795 

averaging the diurnal hourly LSTs, the accuracy of the daily mean LST increased (RMSE = 1.13 796 

K) compared to the daily means from paired Aqua LSTs and DTC model interpolation. Time series 797 

analysis suggested high diurnal and interannual accuracy, and mapping analyses illustrated that 798 

the recovered cloudy-sky pixels had good spatial continuity across different seasons. Cloud-799 

contaminated pixels, shown at the cloud edges of the official clear-sky ABI images, were also 800 

recovered. 801 

The sensitivity analyses indicated the robustness of the all-sky LSTs for different cloud 802 

and geolocation conditions. The proposed data have a high tolerance toward long cloud duration. 803 

Moreover, higher elevations may decrease the estimation accuracy of cloudy times, although the 804 

VZA had little impact on product accuracy over the study area observed. DTC analysis showed 805 

climatologically seasonal variations across different land cover types, demonstrating that the all-806 

sky hourly LST product was superior for characterizing DTC variability, and has great potential 807 

for future research use. 808 

Ground validation and DTC analyses exhibited the readiness and robustness of this 809 

approach for further scientific application. The proposed method here is sensor-independent, and 810 

can potentially be implemented for other similar GEO LST products. Based on the results of the 811 

present study, all-sky diurnal air temperature and heat fluxes will be the focus of future research. 812 

 813 
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